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Abstract
We study the eigenvalue problem −u′′(z) − [(iz)m + Pm−1(iz)]u(z) = λu(z)

with the boundary condition that u(z) decays to zero as z tends to infinity
along the rays arg z = −π

2 ± 2π
m+2 in the complex plane, where Pm−1(z) =

a1z
m−1 +a2z

m−2 + · · ·+am−1z is a polynomial and integers m � 3. We provide
an asymptotic expansion of the eigenvalues λn as n → +∞, and prove that for
each real polynomial Pm−1, the eigenvalues are all real and positive, with only
finitely many exceptions.

PACS numbers: 02.30.Hq, 02.30.Mv, 03.65.Ge, 02.70.Hm
Mathematics Subject Classification: 34L40, 34L20

1. Introduction

For integers m � 3 fixed, we are considering the ‘non-standard’ non-self-adjoint eigenvalue
problems

Hu(z, λ) :=
[
− d2

dz2
− (iz)m − Pm−1(iz)

]
u(z, λ) = λu(z, λ), for some λ ∈ C, (1)

with the boundary condition that

u(z, λ) → 0 exponentially, as z → ∞ along the two rays arg(z) = −π

2
± 2π

m + 2
, (2)

where Pm−1 is a polynomial of degree at most m − 1 of the form

Pm−1(z) = a1z
m−1 + a2z

m−2 + · · · + am−1z, aj ∈ C for 1 � j � m − 1. (3)

We let

a := (a1, a2, . . . , am−1) ∈ C
m−1

be the coefficient vector of Pm−1(z). We are mainly interested in the case when Pm−1 is real,
that is, when a ∈ R

m−1. However, some interesting facts in this paper hold also for a ∈ C
m−1.

So except for theorem 4 below, we will allow a ∈ C
m−1.
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If a nonconstant function u satisfies (1) with some λ ∈ C and the boundary condition
(2), then we call λ an eigenvalue of H and u an eigenfunction of H associated with the
eigenvalue λ. Also, the geometric multiplicity of an eigenvalue λ is the number of linearly
independent eigenfunctions associated with the eigenvalue λ. The operator H in (1) with
potential V (z) = −(iz)m − Pm−1(iz) is called PT -symmetric if V (−z) = V (z), z ∈ C. Note
that V (z) = −(iz)m − Pm−1(iz) is a PT -symmetric potential if and only if a ∈ R

m−1.
Before we state our main theorems, we first introduce some known facts by Sibuya [19]

about the eigenvalues λn of H, numbered in the order of nondecreasing magnitudes.

Theorem 1. The eigenvalues λn of H have the following properties.

(I) The set of all eigenvalues is a discrete set in C.
(II) The geometric multiplicity of every eigenvalue is 1.

(III) Infinitely many eigenvalues, accumulating at infinity, exist.
(IV) The eigenvalues have the following asymptotic expansion:

λn =
(

�
(

3
2 + 1

m

)√
π

(
n − 1

2

)
sin

(
π
m

)
�

(
1 + 1

m

) ) 2m
m+2

[1 + o(1)], as n tends to infinity, n ∈ N, (4)

where the error term o(1) could be complex-valued.

This paper is organized as follows. In section 2, we will introduce work of Hille [13] and
Sibuya [19], regarding properties of solutions of (1). We then improve on the asymptotics of
a certain function in [19]. In section 3, we introduce an entire function C(a, λ) whose zeros
are the eigenvalues of H, due to Sibuya [19]. In section 4, we then provide asymptotics of
C(a, λ) as λ → ∞ in the complex plane, improving the asymptotics of C(a, λ) in [19]. In
section 5, we will improve the asymptotic expansion (4) of the eigenvalues. In particular, we
will prove the following. Throughout this paper, we use that �x� is the largest integer that is
less than or equal to x ∈ R.

Theorem 2. Let a ∈ C
m−1 be fixed. Then, there exist e�(a) ∈ C, 1 � � � m

2 + 1 such that
the eigenvalues λn of H have the asymptotic expansion

λn =
n→+∞ λ0,n +

� m
2 +1�∑
�=1

e�(a)λ
1− �

m

0,n + o
(
λ

1
2 − 1

m

0,n

)
, (5)

where

λ0,n =
( (

n + 1
2

)
π

Km sin
(

2π
m

)) 2m
m+2

with Km =
∫ ∞

0

(√
1 + tm − √

tm
)

dt > 0.

One can compute Km directly (or see equation (2.22) in [10] with the identity �(s)�(1 − s) =
π csc(πs)) and obtains

Km =
√

π�
(
1 + 1

m

)
2 cos

(
π
m

)
�

(
3
2 + 1

m

) .

In the last section, we prove the following theorem, regarding monotonicity of |λn|.
Theorem 3. For each a ∈ C

m−1, there exists M > 0 such that |λn| < |λn+1| if n � M .

This is a consequence of (5).
Finally, when H is PT -symmetric (i.e., a ∈ R

m−1), u(z, λ) is an eigenfunction associated
with an eigenvalue λ if and only if u(−z, λ) is an eigenfunction associated with the eigenvalue
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λ. Thus, the eigenvalues either appear in complex conjugate pairs or else are real. So theorem 3
implies the following.

Theorem 4. Suppose that a ∈ R
m−1. Then, the eigenvalues λ of H are all real and positive,

with only finitely many exceptions.

For the rest of the introduction, we will mention a brief history of problem (1).
In recent years, these PT -symmetric operators have gathered considerable attention,

because ample numerical and asymptotic studies suggest that many of such operators have
real eigenvalues only even though they are not self-adjoint. In particular, the differential
operators H with some polynomial potential V and with the boundary condition (2) have been
considered by Bessis and Zinn-Justin [5], Bender and Boettcher [2] and many other physicists
[3–6, 10, 14–16, 18, 20].

Around 1992, Bessis and Zinn-Justin [5] conjectured that when V (z) = iz3 + βz2, β ∈ R,
the eigenvalues are all real and positive, and in 1998, Bender and Boettcher [2] conjectured that
when V (z) = −(iz)m +βz2, β ∈ R, the eigenvalues are all real and positive. Many numerical,
asymptotic and analytic studies support these conjectures (see, e.g., [3–6, 10, 14–16, 18, 20]
and references therein and below).

The first rigorous proof of reality and positivity of the eigenvalues of some non-self-
adjoint H in (1) was given by Dorey, Dunning and Tateo in 2001 [9]. They proved that the
eigenvalues of H with the potential V (z) = −(iz)2m − α(iz)m−1 + �(�+1)

z2 , m,α, � ∈ R, are all
real if m > 1 and α < m + 1 + |2� + 1|, and positive if m > 1 and α < m + 1 − |2� + 1|.

Then, in 2002, the present author [17] extended the polynomial potential results of Dorey,
Dunning and Tateo to more general polynomial cases, by adapting the method in [9]. Namely,
when V (z) = −(iz)m − Pm−1(iz), the eigenvalues are all real and positive, provided that for
some 1 � j � m

2 the coefficients of the real polynomial Pm−1 satisfy (j − k)ak � 0 for all
1 � k � m − 1.

However, there are some PT -symmetric polynomial potentials that produce non-real
eigenvalues. Delabaere and Pham [7] and Delabaere and Trinh [8] studied the potential
iz3 + γ iz and showed that a pair of non-real eigenvalues develops for large negative γ .
Moreover, Handy [11] and Handy, Khan, Wang and Tymczak [12] showed that the same
potential admits a pair of non-real eigenvalues for small negative values of γ ≈ −3.0. Also,
Bender, Berry, Meisinger, Savage and Simsek [1] considered the problem with the potential
V (z) = z4 +iAz,A ∈ R, under decaying boundary conditions at both ends of the real axis, and
their numerical study showed that more and more non-real eigenvalues develop as |A| → ∞.
So without any further restrictions on the coefficients ak ∈ R, theorem 4 is the most general
result one can expect about reality of eigenvalues.

Also, the method used to prove theorem 4 in this paper is new. The method used in [9, 17]
is useful in proving reality of all eigenvalues, but I think that some critical arguments in proving
reality of eigenvalues in [9, 17] cannot be applied to the cases when some non-real eigenvalues
exist. The asymptotic expansion (5) itself is interesting, and also (5) implies theorem 3.
Note that (4) is not enough to conclude theorem 3. Finally, theorem 3 and PT -symmetry
of H explained right before theorem 4 above imply the partial reality of the eigenvalues in
theorem 4.

2. Properties of the solutions

In this section, we introduce work of Hille [13] and Sibuya [19] about properties of the
solutions of (1).
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Figure 1. The Stokes sectors for m = 3. The dashed rays represent arg z = ± π
5 , ± 3π

5 , π.

First, we scale equation (1) because many facts that we need later are stated for the scaled
equation. Let u be a solution of (1) and let v(z, λ) = u(−iz, λ). Then, v solves

−v′′(z, λ) + [zm + Pm−1(z) + λ]v(z, λ) = 0, (6)

where m � 3 and Pm−1 is a polynomial (possibly, Pm−1 ≡ 0) of the form (3).
Since we scaled the argument of u, we must rotate the boundary conditions. We state

them in a more general context by using the following definition.

Definition. The Stokes sectors Sk of the equation (6) are

Sk =
{
z ∈ C :

∣∣∣∣arg(z) − 2kπ

m + 2

∣∣∣∣ <
π

m + 2

}
, for k ∈ Z.

See figure 1. It is known from Hille [13, section 7.4] that every nonconstant solution of
(6) either decays to zero or blows up exponentially, in each Stokes sector Sk . More precisely,
one has the following result.

Lemma 5 ([13, section 7.4]).

(i) For each k ∈ Z, every solution v of (6) (with no boundary conditions imposed) is
asymptotic to

(constant)z− m
4 exp

[
±

∫ z

[ξm + Pm−1(ξ) + λ]
1
2 dξ

]
(7)

as z → ∞ in every closed subsector of Sk .
(ii) If a nonconstant solution v of (6) decays in Sk , it must blow up in Sk−1 ∪ Sk+1. However,

when v blows up in Sk, v need not be decaying in Sk−1 or in Sk+1.

Lemma 5(i) implies that if v decays along one ray in Sk , then it decays along all rays in
Sk . Also, if v blows up along one ray in Sk , then it blows up along all rays in Sk . Thus, since
the rotation z �→ iz maps the two rays in (2) onto the centre rays of S−1 and S1,

the boundary conditions on u in (1) mean that v decays in S−1 ∪ S1.

Next we will introduce Sibuya’s results, but first we define a sequence of complex numbers
bj in terms of the ak and λ, as follows. For λ ∈ C fixed, we expand
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(1 + a1z
−1 + a2z

−2 + · · · + am−1z
1−m + λz−m)1/2

= 1 +
∞∑

k=1

( 1
2

k

)
(a1z

−1 + a2z
−2 + · · · + am−1z

1−m + λz−m)k

= 1 +
∞∑

j=1

bj (a, λ)

zj
, for large |z|. (8)

Note that b1, b2, . . . , bm−1 do not depend on λ, so we write bj (a) = bj (a, λ) for
j = 1, 2, . . . , m − 1. So the above expansion without the λz−m term still gives bj for
1 � j � m− 1. We further define rm = −m

4 if m is odd and rm = −m
4 − bm

2 +1(a) if m is even.
The following theorem is a special case of theorems 6.1, 7.2, 19.1 and 20.1 of Sibuya [19]

that is the main ingredient of the proofs of the main results in this paper.

Theorem 6. Equation (6), with a ∈ C
m−1, admits a solution f (z, a, λ) with the following

properties.

(i) f (z, a, λ) is an entire function of z, a and λ.
(ii) f (z, a, λ) and f ′(z, a, λ) = ∂

∂z
f (z, a, λ) admit the following asymptotic expansions. Let

ε > 0. Then,

f (z, a, λ) = zrm(1 + O(z−1/2)) exp[−F(z, a, λ)],

f ′(z, a, λ) = −zrm+ m
2 (1 + O(z−1/2)) exp[−F(z, a, λ)],

as z tends to infinity in the sector |arg z| � 3π
m+2 − ε, uniformly on each compact set of

(a, λ)-values. Here,

F(z, a, λ) = 2

m + 2
z

m
2 +1 +

∑
1�j< m

2 +1

2

m + 2 − 2j
bj (a)z

1
2 (m+2−2j).

(iii) Properties (i) and (ii) uniquely determine the solution f (z, a, λ) of (6).
(iv) For each fixed a ∈ C

m−1 and δ > 0, f and f ′ also admit the asymptotic expansions,

f (0, a, λ) = [1 + o(1)]λ−1/4 exp[L(a, λ)], (9)

f ′(0, a, λ) = −[1 + o(1)]λ1/4 exp[L(a, λ)], (10)

as λ → ∞ in the sector |arg(λ)| � π − δ, where

L(a, λ) =



∫ +∞
0

(√
tm + Pm−1(t) + λ − t

m
2 − ∑ m+1

2
j=1 bj (a)t

m
2 −j

)
dt,

if m is odd,∫ +∞
0

(√
tm + Pm−1(t) + λ − t

m
2 − ∑ m

2
j=1 bj (a)t

m
2 −j − b m

2 +1(a)

t+1

)
dt,

if m is even.

(v) The entire functions λ �→ f (0, a, λ) and λ �→ f ′(0, a, λ) have orders 1
2 + 1

m
.

Proof. In Sibuya’s book [19], see theorem 6.1 for a proof of (i) and (ii); theorem 7.2 for
a proof of (iii); and theorem 19.1 for a proof of (iv). Moreover, (v) is a consequence of (iv)
along with theorem 20.1. Note that properties (i), (ii) and (iv) are summarized on pages 112–3
of Sibuya [19]. �

Using this theorem, Sibuya [19, theorem 19.1] also showed the following corollary that
will be useful later on.
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Corollary 7. Let a ∈ C
m−1 be fixed. Then, L(a, λ) = Kmλ

1
2 + 1

m (1 + o(1)) as λ tends to
infinity in the sector |arg λ| � π − δ, and hence

Re (L(a, λ)) = Km cos

(
m + 2

2m
arg(λ)

)
|λ| 1

2 + 1
m (1 + o(1)), (11)

as λ → ∞ in the sector |arg(λ)| � π − δ.
In particular, Re (L(a, λ)) → +∞ as λ → ∞ in any closed subsector of the sector

|arg(λ)| < mπ
m+2 . In addition, Re (L(a, λ)) → −∞ as λ → ∞ in any closed subsector of the

sectors mπ
m+2 < |arg(λ)| < π − δ.

Proof. This asymptotic expansion will be clear from lemma 8 below or, alternatively, see
[19, theorem 19.1] for a proof. �

Based on the above corollary, Sibuya [19, theorem 29.1] also proved the following
asymptotic expansion of the eigenvalues:

λn = ωm

(
(−2n + 1)π

2Km sin
(

2π
m

)) 2m
m+2

[1 + o(1)], as n → ∞, (12)

where

ω = exp

[
2π i

m + 2

]
.

Note that in this paper we consider the boundary conditions of the scaled equation (6) where
v decays in S−1 ∪ S1, while Sibuya studies equation (6) with boundary conditions such that v

decays in S0 ∪ S2. The factor ωm in our formula (12) is due to this scaling of the problem.

Remark. Throughout this paper, we will deal with numbers like (ωνλ)s for some s ∈ R, and
ν ∈ C. As usual, we will use

ων = exp

[
ν

2π i

m + 2

]
and if arg(λ) is specified, then

arg((ωνλ)s) = s[arg(ων) + arg(λ)] = s

[
Re(ν)

2π

m + 2
+ arg(λ)

]
, s ∈ R.

If s �∈ Z, then the branch of λs is chosen to be the negative real axis.

Next, we provide an improved asymptotic expansion of L. We will use this new asymptotic
expansion of L to improve the asymptotic expansion (12) of the eigenvalues.

Lemma 8. Let m � 3 and a ∈ C
m−1 be fixed. Then, there exist constants Km,j (a) ∈ C,

0 � j � m
2 + 1, such that

L(a, λ) =


∑ m+1
2

j=0 Km,j (a)λ
1
2 + 1−j

m + O
(|λ|− 1

2m

)
, if m is odd,∑ m

2 +1
j=0 Km,j (a)λ

1
2 + 1−j

m − b m
2 +1(a)

m
ln(λ) + O

(|λ|− 1
m

)
, if m is even,

as λ → ∞ in the sector |arg(λ)| � π − δ.

Proof. The function L(a, λ) is defined as an integral over 0 � t < +∞ in theorem 6. We
will rotate the contour of integration using Cauchy’s integral formula. In doing so, we need to
justify that the integrand in the definition of L(a, λ) is analytic in some domain in the complex
plane.
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Let 0 < δ < π
m+2 be a fixed number. Suppose that 0 � arg(λ) � π − δ. Then, if

0 � arg(t) � 1
m

arg(λ), there exists M0 > 0 such that

−π < − δ

2
� arg(tm + Pm−1(t)) � arg(λ) +

δ

2
� π − δ

2
,

provided that |t | � M0. Since tm+Pm−1(t) lies in a large disc centred at the origin for |t | � M0,
we see that for all λ with |λ| large, we have that − δ

2 < arg(tm + Pm−1(t) + λ) < π − δ
2

and |tm + Pm−1(t) + λ| > 0 for all t in the sector 0 � arg(t) � 1
m

arg(λ), and hence√
tm + Pm−1(t) + λ is analytic in the sector 0 � arg(t) � 1

m
arg(λ) if λ lies outside a large disc

and in the sector 0 � arg(λ) � π − δ.
Let

Q(t, a, λ) =


√
tm + Pm−1(t) + λ − t

m
2 − ∑ m+1

2
j=1 bj (a)t

m
2 −j , if m is odd,

√
tm + Pm−1(t) + λ − t

m
2 − ∑ m

2
j=1 bj (a)t

m
2 −j − b m

2 +1(a)

t+1 , if m is even.

Then, since |Q(t, a, λ)| = O(|t |− m
2 ) as t tends to infinity in the sector 0 � arg(t) � 1

m
arg(λ),

we have by Cauchy’s integral formula, upon substituting t = λ
1
m τ for all λ with |λ| large

enough,

L(a, λ) =
∫ +∞

0
Q(t, a, λ) dt = λ

1
m

∫ +∞

0
Q

(
λ

1
m τ, a, λ

)
dτ, (13)

where

Q
(
λ

1
m τ, a, λ

)

=



λ
1
2

√
τm + 1 +

Pm−1
(
λ

1
m τ

)
λ

− τ
m
2 − ∑ m+1

2
j=1 bj (a)

τ
m
2 −j

λ
j

m

 ,

if m is odd,

λ
1
2

√
τm + 1 +

Pm−1
(
λ

1
m τ

)
λ

− τ
m
2 − ∑ m

2
j=1 bj (a)

τ
m
2 −j

λ
j

m

− λ− 1
2 bm

2 +1(a)

λ
1
m τ + 1

 ,

if m is even.

Similarly, (13) holds for −π + δ � arg(λ) � 0.
Next, we examine the following square root in Q

(
λ

1
m τ, a, λ

)
:√

τm + 1 +
Pm−1

(
λ

1
m τ

)
λ

=
√

τm + 1

√
1 +

Pm−1
(
λ

1
m τ

)
λ(τm + 1)

=
√

τm + 1

1 +
∞∑

k=1

( 1
2

k

) (
Pm−1

(
λ

1
m τ

)
λ(τm + 1)

)k


let=
√

τm + 1 +
∞∑

j=1

gj (τ )

λ
j

m

,

where gj (τ ) are functions such that gj (τ ) are all integrable on [0, R] for any R > 0. Moreover,
by the definition of bj in (8), we see that for 1 � j � m − 1,

gj (τ ) =
j∑

k=1

bj,k(a)τmk−j

(τm + 1)k− 1
2

for some constants bj,k(a) such that
j∑

k=1

bj,k(a) = bj (a).
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Thus,

gj (τ ) − bj (a)τ
m
2 −j =

j∑
k=1

bj,k(a)

(
τmk−j

(τm + 1)k− 1
2

− τ
m
2 −j

)

=
τ→∞

j∑
k=1

bj,k(a)τ
m
2 −jO

(
1

τm

)
=

τ→∞ O

(
1

τ
m
2 +j

)
, for all 1 � j � m + 1

2
.

So
∫ ∞

0

∣∣gj (τ ) − bj (a)τ
m
2 −j

∣∣ dτ < +∞ for all 1 � j � m+1
2 . Next, when m is even and

j = m
2 + 1, we write∫ ∞

0

(
gm

2 +1(τ ) − bm
2 +1(a)

τ + λ− 1
m

)
dτ

=
∫ ∞

0

(
gm

2 +1(τ ) − bm
2 +1(a)

τ + 1

)
dτ + bm

2 +1(a)

∫ ∞

0

(
1

τ + 1
− 1

τ + λ− 1
m

)
dτ

let= Km, m
2 +1(a) − bm

2 +1(a)

m
ln(λ),

where we take Im(ln(λ)) = arg(λ) ∈ (−π, π).
Thus, we have that

L(a, λ) =


∑ m+1
2

j=0 Km,j (a)λ
1
2 + 1−j

m + O
(|λ|− 1

2m

)
, if m is odd,∑ m

2 +1
j=0 Km,j (a)λ

1
2 + 1−j

m − b m
2 +1(a)

m
ln(λ) + O

(|λ|− 1
m

)
, if m is even,

as λ → ∞ in the sector |arg(λ)| � π − δ, where

Km,0(a) = Km =
∫ ∞

0

(√
1 + tm − √

tm
)

dt > 0, for all m � 3,

Km,j (a) =
∫ ∞

0

(
gj (t) − bj (a)t

m
2 −j

)
dt, for all 1 � j � m + 1

2
,

Km, m
2 +1(a) =

∫ ∞

0

(
gm

2 +1(t) − bm
2 +1(a)

t + 1

)
dt, when m is even.

(14)

This completes the proof. �

3. Eigenvalues are zeros of an entire function

In this section, we will prove that the eigenvalues are zeros of an entire function, due to Sibuya
[19].

First, we let

Gk(a) := (ω−ka1, ω
−2ka2, . . . , ω

−(m−1)kam−1), for k ∈ Z.

Then, recall that the function f (z, a, λ) in theorem 6 solves (6) and decays to zero exponentially
as z → ∞ in S0, and blows up in S−1 ∪ S1. Next, one can check that the function

fk(z, a, λ) := f (ω−kz,Gk(a), ω−mkλ),

which is obtained by scaling f (z,Gk(a), ω−mkλ) in the z-variable, also solves (6). It is clear
that f0(z, a, λ) = f (z, a, λ). Also, fk(z, a, λ) decays in Sk and blows up in Sk−1 ∪ Sk+1 since
f (z,Gk(a), ω−mkλ) decays in S0. Since no nonconstant solution decays in two consecutive
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Stokes sectors (see lemma 5 (ii)), fk and fk+1 are linearly independent and hence any solution
of (6) can be expressed as a linear combination of these two. Especially, there exist some
coefficients C(a, λ) and C̃(a, λ) such that

f−1(z, a, λ) = C(a, λ)f0(z, a, λ) + C̃(a, λ)f1(z, a, λ). (15)

We then see that

C(a, λ) = W−1,1(a, λ)

W0,1(a, λ)
and C̃(a, λ) = −W−1,0(a, λ)

W0,1(a, λ)
, (16)

where Wj,k = fjf
′
k − f ′

j fk is the Wronskian of fj and fk . Since both fj and fk are solutions
of the same linear equation (6), we know that the Wronskians are constant functions of z.
Also, since fk and fk+1 are linearly independent, Wk,k+1 �= 0 for all k ∈ Z. Moreover, we have
the following lemma that is useful later on.

Lemma 9. Suppose k, j ∈ Z. Then,

Wk+1,j+1(a, λ) = ω−1Wk,j (G(a), ω2λ) (17)

and W0,1(a, λ) = 2ωµ(a), where

µ(a) =
{

m
4 , if m is odd,
m
4 − bm

2 +1(a), if m is even.

Moreover,

C̃(a, λ) = −W−1,0(a, λ)

W0,1(a, λ)
= −ω

W0,1(G
−1(a), ω−2λ)

W0,1(a, λ)
= −ω1+2ν(a),

where

ν(a) =
{

0, if m is odd,
bm

2 +1(a), if m is even.
(18)

Proof. See Sibuya [19, pp 116–8] for a proof. Here, we mention that by (8), we have
bm

2 +1(G
−1(a)) = −bm

2 +1(a) and hence ν(G−1(a)) = −ν(a). �

Now we can identify the eigenvalues of H as the zeros of the entire function λ �→ C(a, λ).

Theorem 10. For each fixed a ∈ C
m−1, the function λ �→ C(a, λ) is entire. Moreover, λ is

an eigenvalue of H if and only if C(a, λ) = 0.

Proof. Since W0,1(a, λ) �= 0 and since W−1,1(a, λ) is a Wronskian of two entire functions, it
is clear from (16) that C(a, λ) is an entire function of λ for each fixed a ∈ C

m−1.
Next, suppose that λ is an eigenvalue of H with a corresponding eigenfunction u. Then

the scaled eigenfunction v(z, λ) = u(−iz, λ) solves (6) and decays in S−1 ∪ S1. Hence, v

is a (nonzero) constant multiple of f1 since both decay in S1. Similarly, v is also a constant
multiple of f−1. Thus, f−1 is a constant multiple of f1, implying C(a, λ) = 0.

Conversely, if C(a, λ) = 0, then f−1 is a constant multiple of f1, and hence f1 also decays
in S−1. Thus, f1 decays in S−1 ∪ S1 and is a scaled eigenfunction with the eigenvalue λ. �

Moreover, the following is an easy consequence of (15): for each k ∈ Z, we have

W−1,k(a, λ) = C(a, λ)W0,k(a, λ) + C̃(a)W1,k(a, λ), (19)

where we use C̃(a) for C̃(a, λ) since it is independent of λ.
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4. Asymptotic expansions of C(a, λ)

In this section, we provide asymptotic expansions of the entire function C(a, λ) as λ → ∞
along all possible rays to infinity in the complex plane.

First, we provide an asymptotic expansion of the Wronskian of f0 and fj in preparation
for providing an asymptotic expansion of C(a, λ).

Lemma 11. Suppose that 1 � j � m
2 + 1. Then, for each a ∈ C

m−1 and 0 < δ < π
m+2 ,

W0,j (a, λ) = [
2iω− j

2 + o(1)
]

exp[L(Gj(a), ω2j−m−2λ) + L(a, λ)], (20)

as λ → ∞ in the sector

−π + δ � π − 4jπ

m + 2
+ δ � arg(λ) � π − δ. (21)

Proof. We fix 1 � j � m
2 + 1. Then,

W0,j (a, λ) = f0(z, a, λ)f ′
j (z, a, λ) − f ′

0(z, a, λ)fj (z, a, λ)

= ω−j f (0, a, λ)f ′(0,Gj (a), ω2j−m−2λ) − f ′(0, a, λ)f (0,Gj (a), ω2j−m−2λ)

=
λ→∞

−[
ω−jω

2j−m−2
4 − ω− 2j−m−2

4 + o(1)
]

exp[L(Gj(a), ω2j−m−2λ) + L(a, λ)]

=
λ→∞

[
2iω− j

2 + o(1)
]

exp[L(Gj(a), ω2j−m−2λ) + L(a, λ)],

where we used (9) and (10) with

|arg(λ)| � π − δ and |arg(ω2j−m−2λ)| � π − δ,

which is (21). Here we also used j � m
2 + 1. �

Next, we provide an asymptotic expansion of W−1,1(a, λ) as λ → ∞ along the rays near
the negative real axis. Note from (16) that W−1,1(a, λ) = W0,1(a, λ)C(a, λ). Also, W0,1(a, λ)

is a nonzero constant function of λ. So from these one gets an asymptotic expansion of
C(a, λ).

Theorem 12. For each fixed a ∈ C
m−1 and 0 < δ < π

m+2 ,

W−1,1(a, λ) = [2i + o(1)] exp[L(G−1(a), ω−2λ) + L(G(a), ω−mλ)], (22)

as λ → ∞ along the rays in the sector

π − 4π

m + 2
+ δ � arg(λ) � π +

4π

m + 2
− δ. (23)

Moreover, there exists a constant M1 > 0 such that W−1,1(a, λ) �= 0 for all λ in the sector
(23) if |λ| � M1.

Proof. This is an easy consequence of lemma 11 and equation (17).
The last assertion of the theorem is a consequence of the asymptotic expansion (22). �

The asymptotic expansion of C(a, λ) in a sector near the positive real axis is obtained in
the following theorem.

Theorem 13. Suppose that m � 4. Then, for each fixed a ∈ C
m−1 and 0 < δ < π

m+2 ,

C(a, λ) = [
ω

1
2 + o(1)

]
exp[L(G−1(a), ω−2λ) − L(a, λ)]

+
[
ω

1
2 +2ν(a) + o(1)

]
exp[L(G(a), ω2λ) − L(a, λ)],
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as λ → ∞ in the sector

π − 4
⌊

m
2

⌋
π

m + 2
+ δ � arg(λ) � π − 4π

m + 2
− δ. (24)

Proof. Suppose 2 � k � m
2 . Then, from (17), (19) and lemma 11,

C(a, λ) = W−1,k(a, λ)

W0,k(a, λ)
− C̃(a)

W1,k(a, λ)

W0,k(a, λ)

= ωW0,k+1(G
−1(a), ω−2λ)

W0,k(a, λ)
− C̃(a)

ω−1W0,k−1(G(a), ω2λ)

W0,k(a, λ)

= [
ω

1
2 + o(1)

]exp[L(Gk(a), ω2k−m−2λ) + L(G−1(a), ω−2λ)]

exp[L(Gk(a), ω2k−m−2λ) + L(a, λ)]

− [
ω− 1

2 + o(1)
]
C̃(a)

exp[L(Gk(a), ω2k−m−2λ) + L(G(a), ω2λ)]

exp[L(Gk(a), ω2k−m−2λ) + L(a, λ)]

= [
ω

1
2 + o(1)

]
exp[L(G−1(a), ω−2λ) − L(a, λ)]

+
[
ω− 1

2 + o(1)
]
ω1+2ν(a) exp[L(G(a), ω2λ) − L(a, λ)],

as λ → ∞ such that

−π < π − 4(k + 1)π

m + 2
+ δ � arg(ω−2λ) � π − δ,

π − 4kπ

m + 2
+ δ � arg(λ) � π − δ,

π − 4(k − 1)π

m + 2
+ δ � arg(ω2λ) � π − δ,

that is,

π − 4kπ

m + 2
+ δ � arg(λ) � π − 4π

m + 2
− δ,

provided that 2 � k � m
2 . So in order to complete the proof, we choose k = ⌊

m
2

⌋
. �

The sectors (23) and (24) do not cover the entire complex plane. The next theorem covers
a sector in the upper-half plane, connecting the sectors (23) and (24) in the upper-half plane.

Theorem 14. Suppose that a ∈ C
m−1 and 0 < δ < π

m+2 . If m � 4, then

C(a, λ) = [
ω

1
2 + o(1)

]
exp[L(G−1(a), ω−2λ) − L(a, λ)]

− [iω1+µ(a)+4ν(a) + o(1)] exp[−L(G2(a), ω2−mλ) − L(a, λ)], (25)

as λ → ∞ in the sector

π − 8π

m + 2
+ δ � arg(λ) � π − δ. (26)

If m = 3, then

C(a, λ) = [−ω−2 + o(1)] exp[L(G4(a), ω−2λ) − L(a, λ)]

− [
iω

7
4 + o(1)

]
exp[−L(G2(a), ω−1λ) − L(a, λ)],

as λ → ∞ in the sector

−π

5
+ δ � arg(λ) � π − δ. (27)
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Moreover, if m � 6, then there exists a constant M2 > 0 such that C(a, λ) �= 0 for all λ

in the sector (26) if |λ| � M2.

Proof. Suppose that m � 4. Then, from lemmas 9 and 11, and (19) with k = 2,

C(a, λ) = W−1,2(a, λ)

W0,2(a, λ)
− C̃(a)

W1,2(a, λ)

W0,2(a, λ)

= ωW0,3(G
−1(a), ω−2λ)

W0,2(a, λ)
− C̃(a)

ω−1W0,1(G(a), ω2λ)

W0,2(a, λ)

= ω
[
2iω− 3

2 + o(1)
]

exp[L(G2(a), ω2−mλ) + L(G−1(a), ω−2λ)][
2iω− 2

2 + o(1)
]

exp[L(G2(a), ω2−mλ) + L(a, λ)]

− C̃(a)
ω−1W0,1(G(a), ω2λ)

[2iω−1 + o(1)] exp[L(G2(a), ω2−mλ) + L(a, λ)]

= [
ω

1
2 + o(1)

]
exp[L(G−1(a), ω−2λ) − L(a, λ)]

− −ω1+2ν(a)2ωµ(G(a))

[2i + o(1)] exp[L(G2(a), ω2−mλ) + L(a, λ)]
,

as λ → ∞ such that

−π + δ � π − 12π

m + 2
+ δ � arg(ω−2λ) � π − δ and π − 8π

m + 2
+ δ � arg(λ) � π − δ,

that is,

π − 8π

m + 2
+ δ � arg(λ) � π − δ.

Next, we use 2ν(a) + µ(G(a)) = µ(a) + 4ν(a) to get (25).
Suppose m = 3. Then, ω5 = 1. Also, W−3,0(a, λ) = W2,0(a, λ) since f−3(z, a, λ) =

f2(z, a, λ). Thus, we have that

C(a, λ) = W−1,2(a, λ)

W0,2(a, λ)
− C̃(a)

W1,2(a, λ)

W0,2(a, λ)

= ω−2W−3,0(G
2(a), ω4λ)

W0,2(a, λ)
− C̃(a)

ω−1W0,1(G(a), ω2λ)

W0,2(a, λ)

= −ω−2W0,2(G
2(a), ω4λ)

W0,2(a, λ)
− C̃(a)

ω−1W0,1(G(a), ω2λ)

W0,2(a, λ)

= −ω−2W0,2(G
2(a), ω−1λ)

W0,2(a, λ)
− C̃(a)

ω−1W0,1(G(a), ω2λ)

W0,2(a, λ)

= −ω−2
[
2iω− 2

2 + o(1)
]

exp[L(G4(a), ω−2λ) + L(G2(a), ω−1λ)][
2iω− 2

2 + o(1)
]

exp[L(G2(a), ω−1λ) + L(a, λ)]

− C̃(a)
ω−1W0,1(G(a), ω2λ)

[2iω−1 + o(1)] exp[L(G2(a), ω−1λ) + L(a, λ)]

= [−ω−2 + o(1)] exp[L(G4(a), ω−2λ) − L(a, λ)]

− −ω1+2ν(a)2ωµ(G(a))

[2i + o(1)] exp[L(G2(a), ω−1λ) + L(a, λ)]
,

as λ → ∞ such that

−π + δ � π − 8π

5
+ δ � arg(ω−1λ) � π − δ and π − 8π

5
+ δ � arg(λ) � π − δ,
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that is,

π − 6π

5
+ δ � arg(λ) � π − δ.

In order to show the last assertion, we suppose that C(a, λ) = 0 for some λ in (26) with
large |λ|. Then, from the asymptotic expansion (25), we have

exp[L(G−1(a), ω−2λ) + L(G2(a), ω2−mλ)] = iω
1
2 +µ(a)+4ν(a) + o(1) (28)

By corollary 7,

Re(L(G−1(a), ω−2λ)) = Km cos

(
m + 2

2m
arg(ω−2λ)

)
|λ| 1

2 + 1
m (1 + o(1))

= Km cos

(
−2π

m
+

m + 2

2m
arg(λ)

)
|λ| 1

2 + 1
m (1 + o(1)),

Re(L(G2(a), ω2−mλ)) = Km cos

(
m + 2

2m
arg(ω2−mλ)

)
|λ| 1

2 + 1
m (1 + o(1))

= −Km cos

(
2π

m
+

m + 2

2m
arg(λ)

)
|λ| 1

2 + 1
m (1 + o(1)).

Note that if m � 6, then 0 < δ � arg(λ) � π − δ in (26). Since

cos

(
−2π

m
+

m + 2

2m
arg(λ)

)
− cos

(
2π

m
+

m + 2

2m
arg(λ)

)
= 2 sin

(
2π

m

)
sin

(
m + 2

2m
arg(λ)

)
> 0,

we see that

Re(L(G−1(a), ω−2λ) + L(G2(a), ω2−mλ)) → +∞,

as λ → ∞ in (26), and hence the left-hand side of (28) blows up. Thus, C(a, λ) cannot have
infinitely many zeros in (26). This completes the proof. �

The next theorem covers a sector in the lower-half plane, connecting sectors (23)
and (24).

Theorem 15. Suppose that a ∈ C
m−1 and 0 < δ < π

m+2 . If m � 4, then

C(a, λ) = [−iω1+µ(a) + o(1)] exp[−L(a, ω−m−2λ) − L(G−2(a), ω−4λ)]

+
[
ω

1
2 +2ν(a) + o(1)

]
exp[L(G(a), ω−mλ) − L(a, ω−m−2λ)],

as λ → ∞ in the sector

π + δ � arg(λ) � π +
8π

m + 2
− δ. (29)

If m = 3, then

C(a, λ) = [ − iω
7
4 + o(1)

]
exp[−L(a, ω−5λ) − L(G−2(a), ω−4λ)]

+ [ω3 + o(1)] exp[L(G−1(a), ω−3λ) − L(a, ω−5λ)],

as λ → ∞ in the sector

π + δ � arg(λ) � 2π +
π

5
− δ. (30)

Moreover, if m � 6, then there exists a constant M3 > 0 such that C(a, λ) �= 0 for all λ

in the sector (29) if |λ| � M3.
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Proof. Suppose that m � 4. Then, from lemmas 9 and 11, and (19) with k = −2,

C(a, λ) = W−1,−2(a, λ)

W0,−2(a, λ)
− C̃(a)

W1,−2(a, λ)

W0,−2(a, λ)

= W0,1(G
−2(a), ω−4λ)

W0,2(G−2(a), ω−4λ)
− C̃(a)

W0,3(G
−2(a), ω−4λ)

W0,2(G−2(a), ω−4λ)

= W0,1(G
−2(a), ω−4λ)[

2iω− 2
2 + o(1)

]
exp[L(a, ω−m−2λ) + L(G−2(a), ω−4λ)]

− C̃(a)

[
2iω− 3

2 + o(1)
]

exp[L(G(a), ω−mλ) + L(G−2(a), ω−4λ)][
2iω− 2

2 + o(1)
]

exp[L(a, ω−m−2λ) + L(G−2(a), ω−4λ)]

= 2ωµ(G−2(a))

[2iω−1 + o(1)] exp[L(a, ω−m−2λ) + L(G−2(a), ω−4λ)]

+
[
ω− 1

2 + o(1)
]
ω1+2ν(a) exp[L(G(a), ω−mλ) + L(G−2(a), ω−4λ)]

exp[L(a, ω−m−2λ) + L(G−2(a), ω−4λ)]
,

as λ → ∞ such that

π − 12π

m + 2
+ δ � arg(ω−4λ) � π − δ and π − 8π

m + 2
+ δ � arg(ω−4λ) � π − δ, (31)

that is,

π + δ � arg(λ) � π +
8π

m + 2
− δ, (32)

which is (29).
Suppose that m = 3. Then,

C(a, λ) = W−1,−2(a, λ)

W0,−2(a, λ)
− C̃(a)

W1,−2(a, λ)

W0,−2(a, λ)

= W0,1(G
−2(a), ω−4λ)

W0,2(G−2(a), ω−4λ)
+ C̃(a)

ω−1W0,−3(G(a), ω2λ)

ω2W0,2(G−2(a), ω−4λ)

= W0,1(G
−2(a), ω−4λ)

W0,2(G−2(a), ω−4λ)
+ ω2C̃(a)

W0,2(G
−4(a), ω−3λ)

W0,2(G−2(a), ω−4λ)

= W0,1(G
−2(a), ω−4λ)[

2iω− 2
2 + o(1)

]
exp[L(a, ω−5λ) + L(G−2(a), ω−4λ)]

− ω2C̃(a)

[
2iω− 2

2 + o(1)
]

exp[L(G−2(a), ω−4λ) + L(G−4(a), ω−3λ)][
2iω− 2

2 + o(1)
]

exp[L(a, ω−5λ) + L(G−2(a), ω−4λ)]

= 2ωµ(G−2(a))

[2iω−1 + o(1)] exp[L(a, ω−5λ) + L(G−2(a), ω−4λ)]

+ [ω2 + o(1)]ω1+2ν(a) exp[L(G−2(a), ω−4λ) + L(G−4(a), ω−3λ)]

exp[L(a, ω−5λ) + L(G−2(a), ω−4λ)]
,

as λ → ∞ such that

π − 8π

5
+ δ � arg(ω−3λ) � π − δ and π − 8π

5
+ δ � arg(ω−4λ) � π − δ,
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that is,

π + δ � arg(λ) � π +
6π

5
− δ.

Finally, the proof of the last assertion of this theorem follows as in the proof of theorem 14.
�

From the asymptotic expansions in the previous four theorems, one obtains the order of
the entire function λ �→ C(a, λ). The order of an entire function g is defined by

lim sup
r→∞

ln ln M(r, g)

ln r
,

where M(r, g) = max{|g(r eiθ )| : 0 � θ � 2π} for r > 0. If for some positive real numbers
σ, c1, c2, we have exp[c1r

σ ] � M(r, g) � exp[c2r
σ ] for all large r, then the order of g is σ .

Corollary 16. The entire function λ �→ C(a, λ) is of order 1
2 + 1

m
.

Proof. The sectors in (21), (23), (26) and (29), cover the entire complex plane. So the
nonconstant entire function |C(a, λ)| is bounded above by c1 exp

[
d1|λ| 1

2 + 1
m

]
for some positive

constants c1, d1. Also, along the ray arg(λ) = π , one can see from (11) and (22) that |C(a, λ)|
is bounded below by c2 exp

[
d2|λ| 1

2 + 1
m

]
for some positive constants c2, d2. Hence, the order

of C(a, ·) is 1
2 + 1

m
. �

Remark. Since the eigenvalues are the zeros of the entire function λ �→ C(a, λ) of order
1
2 + 1

m
∈ (0, 1), there are infinitely many discrete eigenvalues as was already mentioned in

theorem 1.

5. Asymptotic expansion of the eigenvalues: proof of theorem 2

In this section, we prove theorem 2 by using the asymptotic expansions of C(a, λ) and L(a, λ).

Proof of theorem 2. Recall that by theorem 10, λ is an eigenvalue of H if and only if
C(a, λ) = 0.

For m � 4 and a ∈ C
m−1 fixed, suppose that C(a, λ) = 0 for some λ with |λ| large.

Then, from the asymptotic expansion of C(a, λ) in theorem 13, we have

[1 + o(1)] exp[L(G(a), ω2λ) − L(G−1(a), ω−2λ)] = −ω−2ν(a),

and absorbing [1 + o(1)] into the exponential function then yields

exp[L(G(a), ω2λ) − L(G−1(a), ω−2λ) + o(1)] = −ω−2ν(a).

Thus, from lemma 8 if m is odd, we infer

ln(−ω−2ν(a)) = L(G(a), ω2λ) − L(G−1(a), ω−2λ) + o(1)

=
� m

2 +1�∑
j=0

[Km,j (G(a))(ω2λ)
1
2 + 1−j

m − Km,j (G
−1(a))(ω−2λ)

1
2 + 1−j

m ] + o(1)

= 2iKm,0 sin

(
2π

m

)
λ

1
2 + 1

m +

� m
2 +1�∑
j=1

cm,j (a)λ
1
2 + 1−j

m + o(1), (33)

where

cm,j (a) = Km,j (G(a))(ω2)
1
2 + 1−j

m − Km,j (G
−1(a))(ω−2)

1
2 + 1−j

m , 1 � j � m + 1

2
. (34)
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Similarly, if m is even, then from lemma 8, we have (33) with cm,j (a) in (34) for
1 � j � m

2 , and

cm, m
2 +1(a) = Km, m

2 +1(G(a)) − Km, m
2 +1(G

−1(a)) +
bm

2 +1(a)

m

8π i

m + 2
,

where we used bm
2 +1(G

−1(a)) = −bm
2 +1(a) = bm

2 +1(G(a)).

Note that there exist constants M4 > 0 and ε > 0 such that the function

λ �→ L(G(a), ω2λ) − L(G−1(a), ω−2λ) + o(1) (35)

is continuous in the region |λ| � M4 and |arg(λ)| � ε. From (33) we then see that the function
(35) maps the region |λ| � M4 and |arg(λ)| � ε onto a region that contains the entire positive
imaginary axis near infinity.

Thus, from (33) we get that for every sufficiently large n ∈ N there exists λn such that

2iKm,0 sin

(
2π

m

)
λ

1
2 + 1

m
n +

� m
2 +1�∑
j=1

cm,j (a)λ
1
2 + 1−j

m
n + o(1) =

(
2n + 1 − 4ν(a)

m + 2

)
π i.

Thus,

λ
1
2 + 1

m
n +

� m
2 +1�∑
j=1

cm,j (a)

2iKm,0 sin
(

2π
m

)λ
1
2 + 1−j

m
n + o(1) =

(
2n + 1 − 4ν(a)

m+2

)
π

2Km,0 sin
(

2π
m

) .

Let

dm,j (a) =


cm,j (a)

2iKm,0 sin
(

2π
m

) , if 1 � j � m + 1

2

cm,j (a) + 4ν(a)

m+2 π i

2iKm,0 sin
(

2π
m

) , if m is even and j = m

2
+ 1.

(36)

Then,

λ
1
2 + 1

m
n +

� m
2 +1�∑
j=1

dm,j (a)λ
1
2 + 1−j

m
n + o(1) = (2n + 1)π

2Km,0 sin
(

2π
m

) . (37)

Introduce the decomposition λn = λ0,n + λ1,n, where

λ0,n =
(

(2n + 1)π

2Km,0 sin
(

2π
m

)) 2m
m+2

and
λ1,n

λ0,n

= o(1).

Then, from (37), we have

λ
1
2 + 1

m

0,n = λ
1
2 + 1

m

0,n

(
1 +

λ1,n

λ0,n

) 1
2 + 1

m

+

� m
2 +1�∑
j=1

dm,j (a)λ
1
2 + 1−j

m

0,n

(
1 +

λ1,n

λ0,n

) 1
2 + 1−j

m

+ o(1)

= λ
1
2 + 1

m

0,n

(
1 +

∞∑
k=1

( 1
2 + 1

m

k

) (
λ1,n

λ0,n

)k
)

+

� m
2 +1�∑
j=1

dm,j (a)λ
1
2 + 1−j

m

0,n

(
1 +

∞∑
k=1

( 1
2 + 1−j

m

k

) (
λ1,n

λ0,n

)k
)

+ o(1).
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Thus,

0 =
(

1

2
+

1

m

)
λ1,n

λ0,n

+
∞∑

k=2

( 1
2 + 1

m

k

) (
λ1,n

λ0,n

)k

+

� m
2 +1�∑
j=1

dm,j (a)λ
− j

m

0,n

(
1 +

∞∑
k=1

( 1
2 + 1−j

m

k

) (
λ1,n

λ0,n

)k
)

+ o
(
λ

− 1
2 − 1

m

0,n

)
,

and hence

λ1,n

λ0,n

+
2m

m + 2

∞∑
k=2

( 1
2 + 1

m

k

) (
λ1,n

λ0,n

)k

+
2m

m + 2

� m
2 +1�∑
j=1

dm,j (a)λ
− j

m

0,n

( ∞∑
k=1

( 1
2 + 1−j

m

k

)(
λ1,n

λ0,n

)k
)

+ o
(
λ

− 1
2 − 1

m

0,n

)

= − 2m

m + 2

� m
2 +1�∑
j=1

dm,j (a)λ
− j

m

0,n . (38)

Thus, one concludes λ1,n

λ0,n
= λ2,n + λ3,n, where

λ2,n = − 2m

m + 2
dm,1(a)λ

− 1
m

0,n and λ3,n = o
(
λ

− 1
m

0,n

)
. (39)

Next, from (39) along with (38), we have

λ2,n + λ3,n +
2m

m + 2

∞∑
k=2

( 1
2 + 1

m

k

)
(λ2,n + λ3,n)

k

+
2m

m + 2

� m
2 +1�∑
j=1

dm,j (a)λ
− j

m

0,n

( ∞∑
k=1

( 1
2 + 1−j

m

k

)
(λ2,n + λ3,n)

k

)
+ o(λ

− 1
2 − 1

m

0,n )

= − 2m

m + 2

� m
2 +1�∑
j=1

dm,j (a)λ
− j

m

0,n . (40)

Thus,

λ3,n +
2m

m + 2

∞∑
k=2

( 1
2 + 1

m

k

) k∑
�=0

(
k

�

)
λ�

2,nλ
k−�
3,n

+
2m

m + 2

� m
2 +1�∑
j=1

dm,j (a)λ
− j

m

0,n

( ∞∑
k=1

( 1
2 + 1−j

m

k

) k∑
�=0

(
k

�

)
λ�

2,nλ
k−�
3,n

)
+ o

(
λ

− 1
2 − 1

m

0,n

)

= − 2m

m + 2

� m
2 +1�∑
j=2

dm,j (a)λ
− j

m

0,n , (41)

and hence

λ3,n +
2m

m + 2

∞∑
k=2

( 1
2 + 1

m

k

) k−1∑
�=0

(
k

�

)
λ�

2,nλ
k−�
3,n

+
2m

m + 2

� m
2 +1�∑
j=1

dm,j (a)λ
− j

m

0,n

( ∞∑
k=1

( 1
2 + 1−j

m

k

) k−1∑
�=0

(
k

�

)
λ�

2,nλ
k−�
3,n

)
+ o

(
λ

− 1
2 − 1

m

0,n

)
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= − 2m

m + 2

� m
2 +1�∑
j=2

dm,j (a)λ
− j

m

0,n − 2m

m + 2

∞∑
k=2

( 1
2 + 1

m

k

)
λk

2,n

− 2m

m + 2

� m
2 +1�∑
j=1

dm,j (a)λ
− j

m

0,n

( ∞∑
k=1

( 1
2 + 1−j

m

k

)
λk

2,n

)
. (42)

So we choose

λ3,n = λ4,n + λ5,n, (43)

where

λ4,n = − 2m

m + 2
dm,2(a)λ

− 2
m

0,n − 2m

m + 2

( 1
2 + 1

m

2

)
λ2

2,n − mdm,1(a)

m + 2
λ

− 1
m

0,n λ2,n

=
(

− 2m

m + 2
dm,2(a) +

(
2m2

(m + 2)2
−

(
2m

m + 2

)3 ( 1
2 + 1

m

2

))
dm,1(a)2

)
λ

− 2
m

0,n ,

λ5,n = o
(
λ

− 2
m

0,n

)
.

Next, we replace λ3,n in (42) by (43). Upon iterating this process we get

λn = λ0,n + λ1,n = λ0,n

(
1 +

λ1,n

λ0,n

)
= λ0,n(1 + λ2,n + λ3,n)

= λ0,n(1 + λ2,n + λ4,n + λ5,n)

· · ·

= λ0,n

1 +

� m
2 +1�∑
�=1

e�(a)λ
− �

m

0,n + o
(
λ

− 1
2 − 1

m

0,n

) , (44)

as n → +∞, that is, (5).
Suppose that m = 3. For this case we will use the asymptotic expansion in theorem 14

that is valid in (27). Similarly to what we did for the case m � 4, if C(a, λ) = 0, then from
the asymptotic expansion in theorem 14, we have

[1 + o(1)] exp[L(G4(a), ω−2λ) + L(G2(a), ω−1λ)] = −iω
15
4 .

Thus, since L(a, λ) = K3,0(a)λ
5
6 + K3,1(a)λ

3
6 + K3,2(a)λ

1
6 + o(1), we have

L(G4(a), ω−2λ) + L(G2(a), ω−1λ) + o(1)

= K3,0(G
4(a))(ω−2λ)

5
6 + K3,1(G

4(a))(ω−2λ)
3
6 + K3,2(G

4(a))(ω−2λ)
1
6

+ K3,0(G
2(a))(ω−1λ)

5
6 + K3,1(G

2(a))(ω−1λ)
3
6 + K3,2(G

2(a))(ω−1λ)
1
6 + o(1)

= K3,0
(
e−i 2π

3 + e−i π
3
)
λ

5
6 + c3,1(a)λ

3
6 + c3,2(a)λ

1
6 + o(1)

= −2iK3,0 sin

(
2π

3

)
λ

5
6 + c3,1(a)λ

3
6 + c3,2(a)λ

1
6 + o(1).

So the continuous function λ �→ L(G4(a), ω−2λ) + L(G2(a), ω−1λ) + o(1) maps a
neighbourhood of the positive real axis near infinity onto a neighbourhood of the negative
imaginary axis near infinity. Hence, there exists a sequence of λn near the positive real axis
such that for all large enough positive integers n,

−2iK3,0 sin

(
2π

3

)
λ

5
6
n + c3,1(a)λ

3
6
n + c3,2(a)λ

1
6
n + o(1) = ln

(−iω
15
4
) = (π − 2(n + 1)π)i.

From this result one concludes that the asymptotic expansion (5) holds for m = 3 as well
similarly to the proof for the case m � 4. �
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6. Proof of theorem 3

First, note from (5) that arg(λn) → 0 as n → +∞.
Next, we have

λ0,n+1 =
(

(2n + 3)π

2Km,0 sin
(

2π
m

)) 2m
m+2

=
(

(2n + 1)π

2Km,0 sin
(

2π
m

) +
2π

2Km,0 sin
(

2π
m

)) 2m
m+2

= λ0,n

(
1 +

2

2n + 1

) 2m
m+2

= λ0,n

(
1 +

2m

m + 2

2

2n + 1
+ O

(
1

n2

))
= λ0,n +

2mπ

(m + 2)Km,0 sin
(

2π
m

)λ
1− 1

2 − 1
m

0,n + o
(
λ

1
2 − 1

m

0,n

)
. (45)

Thus,

λn+1 − λn =
n→+∞

2mπ

(m + 2)Km,0 sin
(

2π
m

)λ
1
2 − 1

m

0,n + o
(
λ

1
2 − 1

m

0,n

)
,

and hence |λn+1 − λn| → ∞ and arg(λn+1 − λn) → 0 as n → +∞. Since arg(λn) → 0 (and
arg(λn+1) → 0) as n → +∞, there exists N ∈ N such that |λn| < |λn+1| if n � N .

Remark. Here we will show that if a ∈ R
m−1, then e�(a) ∈ R for all 1 � � � m

2 + 1 with
e�(a) defined in (44).

From (14) one can see that Km,j (G−1(a)) = Km,j (G(a)). Next, suppose that a ∈ R
m−1.

If m � 4, then from (34),

icm,j (a) = i
(
Km,j (G(a))(ω2)

1
2 + 1−j

m − Km,j (G
−1(a))(ω−2)

1
2 + 1−j

m

)
= i

(
Km,j (G(a))(ω2)

1
2 + 1−j

m − Km,j (G(a))(ω2)
1
2 + 1−j

m

) ∈ R, 1 � j � m

2
+ 1.

So by (36), dm,j (a) ∈ R for all 1 � j � m
2 + 1, and hence by (44), e�(a) ∈ R for all

1 � � � m
2 + 1.

If m = 3, then one can show e�(a) ∈ R for � = 1, 2, using the formulae at the end of the
proof of theorem 2.
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